PE-24V-240W-55AH
Power Enclosure, 24 VDC, 240 Watts, 55 Amp-Hour Power System

Instructions

Material Provided:
(1) NEMA 4 Power Enclosure
(1) AC power cord, NEMA 5-15P plug, 15 ft. length
(4) NPT-1/2" Liquid tight cord grips/cable feed-thrus, clamping range: 6-11 mm
(1) 12 AWG Brown battery jumper
(2) 12V DC, 55 AH sealed valve regulated lead acid AGM non-spillable batteries

Reference photo & wiring diagram provided.
1. Mount enclosure on wall (customer supplied hardware)
2. Ensure both AC & battery disconnect circuit breakers are in OFF position
3. Qty. 4 liquid tight cord grips (NPT ½") are provided with the PE enclosure (clamping range: 6-11 mm).
 Two sets of four dimples/drill locations are provided on the upper left & right hand sides for drilling
cable feed-thru fittings. NOTE: Metal shavings can cause permanent damage to electronics. We
recommend covering the electronics with a rag before drilling and remove shavings before energizing
the PE System. Identify what drill size is required (7/8" for NPT-1/2") for your installation for the
following cables and install cable feed-thru fittings:
 A. AC Input (115V AC 15 ft. power cord provided)
 B. DC Output to BDA, installer provided.
 C. Alarm contacts (AC FAIL, BATT. LOW & RECTIFIER/CHARGER FAIL), installer provided.
 D. Site Power Monitor or SPM-200 (optional)
4. Route 15 ft. AC power cord through feed-thru, connect to AC input breaker (Hot) & terminal blocks
 (Neutral & Earth Ground) - do not connect to outlet yet.
5. Route BDA amplifier DC input cables through feed-thru, connect to DC LOAD CONNECTIONS:
positive (+) to one each Load circuit breaker (5 Amps/ea.) and the negative (-) to one each DC COM
(-) negative terminal block to the right of the load circuit breakers
6. Route alarm cables through cord grip, connect to alarm terminal blocks on BDS-DIN-UPS-24-10 (see
 wiring diagram)
7. Install batteries in to enclosure per photograph
8. Connect the one battery jumper per photograph
9. Connect battery cables from Battery disconnect circuit breaker and DC ground terminal block to
 24 volt battery string terminals per photograph/wiring diagram.
10. Connect the AC power cord to standard 115V AC outlet
11. Turn on AC disconnect circuit breaker and verify BDS-DIN-UPS-24-10 powers up. After one minute you
should see the following:
 A. AC FAIL LED: Off
 B. BATTERY LOW/BATTERY REPLACEMENT LED: On (extinguishes when battery disconnect breaker
is turned on, batteries connected)
 C. DIAGNOSIS LED: 2 Blink/Pause
12. Confirm the BDA amplifier is receiving power
13. Confirm battery polarity is correct: RED wire to Battery Positive (+) & BLACK wire to Battery
 Negative (-). Turn on the battery disconnect circuit breaker, the diagnostic LED on the BDS unit should
show one of the following:
 A. 1 Blink/Second = Float Mode
 B. 3 Blink/Second = Bulk charging mode (battery requires charge)
14. Verify battery voltage is approximately 27.6V DC (Float mode)

M-PE24V240W55AH
As of 041919
DIN Rail UPS

DC UPS/Battery Detection System

Model: BDS-DIN-UPS 24-10

Installation/Operation Manual

![DIN Rail UPS Image](image)

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Start</td>
<td>2</td>
<td>4) Settings</td>
<td>6</td>
</tr>
<tr>
<td>1) General Information</td>
<td>4</td>
<td>A) Battery Type/Charge Curve</td>
<td>6</td>
</tr>
<tr>
<td>Materials Provided</td>
<td>4</td>
<td>B) Time Charge Current Limit/Battery Charge Level</td>
<td>7</td>
</tr>
<tr>
<td>Optional Equipment</td>
<td>4</td>
<td>C) System Settings</td>
<td>7</td>
</tr>
<tr>
<td>2) Safety Information</td>
<td>4</td>
<td>5) Operation</td>
<td>8</td>
</tr>
<tr>
<td>3) Installation/Wiring</td>
<td>4</td>
<td>A) Status Indicator LED’s</td>
<td>8</td>
</tr>
<tr>
<td>A) Mounting</td>
<td>4</td>
<td>B) LVD</td>
<td>9</td>
</tr>
<tr>
<td>B) Wiring</td>
<td>5</td>
<td>6) Protection</td>
<td>9</td>
</tr>
<tr>
<td>1. AC Input</td>
<td>5</td>
<td>7) Specifications</td>
<td>9</td>
</tr>
<tr>
<td>2. Output</td>
<td>5</td>
<td>8) Troubleshooting</td>
<td>10</td>
</tr>
<tr>
<td>C) Alarm Contacts, Form C</td>
<td>5</td>
<td>9) Warranty</td>
<td>10</td>
</tr>
<tr>
<td>D) Temperature Compensation Sensor</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M-BDSDINUPS2410

AS OF 022118
Quick Start Guide

A) AC Input: Wire Input Block (lettered left to right)
 a) AC Hot 230 VAC: no jumper installed across j1 & j2
 b) AC Hot 115 VAC: wire jumper across j1 and j2
 b) Neutral
 c) Earth Ground
 j1 & j2) Jumper these two inputs for 115 VAC operation
 See page 5 for details.

B) Battery Output: one terminal each for plus and minus.
 See page 5 for details.

C) Battery Charge Current Limit: Allows setting maximum current flow to battery during recharge cycle, use when low amp-hour batteries are applied to system to prevent overheating when recovering dead batteries. Adjustment range 20-100% of available charge current. (Available charge current = unit output rating of 10 amps - load demand. Note: the unit has a load priority circuit, all produced power is made available to the load, remaining power is available for battery charging). See page 6 for details.

E) Output to Load: The unit has a load priority circuit, all produced power is made available to the load, remaining power is available for battery charging. See page 5 for details.

F) Form C Contacts: Activate upon:
 F1. AC Power Fail
 F2. Low Battery: (22.8V)
 F3. Charger Power Circuit Fail

Mounting DIN DC UPS to DIN Rail

1. Insert flat head screwdriver in slot of bottom tab and twist to extend bracket

Removing DIN DC UPS from DIN Rail

1. Insert flat head screwdriver in slot of bottom tab and twist to extend bracket
G) System Settings: via plug-in jumper programing terminals located on bottom of the unit.
 a. Install jumper per illustration below (Table 1) to:
 i. Select float voltage per Battery Type and enable Absorption Charge (see page page 7 for details)
 See page 7 for details on functional settings.

H) Status Indicator LED's
 1. Power Source: Operating on battery back-up power (LED On). LED extinguishes when AC is present.
 2. Low battery @ 70% discharge point, i.e. 30% capacity remains
 3. Charger Output Status and Fault Mode Diagnosis: by blink code:

 Charge Status Blink Code:
 • Bulk: 5 blink/second - Recovery
 • Absorption: 2 blink/second - Bulk
 • Float: 1 blink/second

 Fault Mode Diagnosis Blink Code:
 • Reverse Polarity: 1 blink, pause
 • Battery Not Connected: 2 blink, pause
 • Overload or Short Circuit: 4 blink, pause
 • Low battery: steady on, 5 blink, pause
 • Bad Thermal Sensor: 7 blink, pause and diagnostic
 See page 8 for details.

Table 1: System Settings: Battery Selection/Absorption Charge and Functional Settings

<table>
<thead>
<tr>
<th>Battery Type Selection</th>
<th>Float Charge/ Jumper Insert Position</th>
<th>Absorption Charge Enable/ Jumper Insert Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Lead (Default)</td>
<td>None</td>
<td>28.8 VDC</td>
</tr>
<tr>
<td></td>
<td>![Jumper Insert Position]</td>
<td>Pos. 5</td>
</tr>
<tr>
<td></td>
<td>26.76 VDC</td>
<td></td>
</tr>
<tr>
<td>Sealed Lead Low</td>
<td>Pos. 1</td>
<td>28.8 VDC</td>
</tr>
<tr>
<td>Insert Jumper: Pos. 1</td>
<td>![Jumper Insert Position]</td>
<td>Pos. 5</td>
</tr>
<tr>
<td></td>
<td>27.0 VDC</td>
<td></td>
</tr>
<tr>
<td>Sealed Lead High</td>
<td>Pos. 2</td>
<td>28.8 VDC</td>
</tr>
<tr>
<td>Insert Jumper: Pos. 2</td>
<td>![Jumper Insert Position]</td>
<td>Pos. 5</td>
</tr>
<tr>
<td></td>
<td>27.24 VDC</td>
<td></td>
</tr>
<tr>
<td>Gel Battery</td>
<td>Pos. 3</td>
<td>28.8 VDC</td>
</tr>
<tr>
<td>Insert Jumper: Pos. 3</td>
<td>![Jumper Insert Position]</td>
<td>Pos. 5</td>
</tr>
<tr>
<td></td>
<td>27.6 VDC</td>
<td></td>
</tr>
</tbody>
</table>

* Note: voltages above are at 20˚ C with no battery temp. sensor connected.

Absorption Note:
Depending upon load and battery size, Absorption charging mode may cause intermittent trip of the battery charger/rectifier fail alarm contacts. We recommend not installing the Absorption jumper for stand-by battery applications.
1) General Information

This DIN rail mount DC UPS Combines all system power functions: power supply, battery charger, UPS circuitry and status monitoring in one compact unit that produces 24 volt, 10 amps allocated via outputs for load and battery:

- Load output: “load priority” distribution ensures power is dedicated first to the load, with remainder then allocated to battery charging, thus preventing a discharged battery from impacting operation of critical loads.
- Battery output: 3 step charging for rapid battery recovery, programmable for battery type, with optional temperature compensation sensor
- Battery automatically on line to support load anytime AC fails
- Low voltage disconnect protects battery from total discharge
- Low battery alarm
- High operating temperature range to 70˚C
- Alarm contacts: AC fail, battery status/condition

This DC UPS is fitted with special monitoring and alarm features designed to comply with the latest codes related to public safety in-building wireless communications back-up power requirements, as set forth by NFPA, section 1221.

In normal operation, the unit supplies power to the transmitter/antennas and maintains the back-up battery. Should an event occur that could cause interruption in power, self-diagnosis signals are sent via form C contacts notifying the network operators the system is running in a critical power condition and that potential communications failure is imminent.

1) AC Fail
2) Low battery voltage indicating battery discharged by 70% (i.e. 30% capacity remaining)
3) Internal charger/power circuit fail

Materials Provided:
- 1 ea. DIN-UPS unit with integral DIN rail mount clip
- 3 ea. Jumper tabs for programming
- 1 ea. Jumper wire (orange) for 115 volt input operation

Optional Equipment:
- Temperature Compensation Sensor, P/N: 468-4510-0

2) Safety Information

WARNING – Explosion Hazard. Do not disconnect loads or battery unless AC input and battery have been switched off.

WARNING – Explosion Hazard. This product is not certified for Class 1, Div 2 applications.

WARNING – Switch off or remove AC input and battery power before wiring the BDS-DIN-UPS 24-10. Never work on the DIN UPS when it is connected to AC input and battery. The DIN UPS must be installed in accordance with UL508 or local electrical codes depending upon the application. The DIN UPS should have a suitability sized AC input circuit breaker feeding its AC input. See specification section for maximum AC input draw for your input voltage for circuit breaker sizing.

CAUTION: Hot surface. Avoid touching the DIN UPS case while operating at or near its full load capacity. Remove AC and battery power and allow DIN UPS at least 10 minutes to cool before removing from DIN Rail.

3) Installation/Wiring

A) Mounting:
The unit is designed for 35 mm DIN rail mounting in an enclosure or on a rackmounted DIN Rail bracket and relies on convection (free air) cooling, thus must have a minimum of 4” (10 cm) of open space above and below the BDS-DIN-UPS in order to assure sufficient air flow. We recommend approximately 1/2” (10mm) spacing between adjacent DIN Rail mounted devices. Note, that depending on the ambient temperature and load of the device, the temperature of the case can become hot to the touch.

The unit is designed for vertical mount (+/-5°) and has an integral clip on the back to secure it to the rail. To mount, place the top tabs over the top of the DIN rail, and using a long slotted screw driver insert it in the groove at the bottom of the bracket and twist which will extend the spring loaded mounting bracket downward allowing the unit to be positioned against the DIN rail, release the bracket with DIN UPS positioned vertically and the rail will be captured and the unit secured.
B) Wiring

1. AC Input: Terminal Block (lettered left to right) - Figure 4
 a) AC Hot (note: install jumper provided across terminals j1 and j2 for 115 VAC input)
 b) Neutral
 c) Earth Ground
 j1 & j2) Jumper these two terminals for 115 VAC operation and apply 115V hot to term a and neutral to b
 Recommended wire size: 16 AWG

2. Output

 The unit has two outputs: one connects to the Load and the other to the back-up battery. Note: the unit has a load priority circuit, all produced power first is made available to the load with remaining power made available for battery charging. The DIN UPS is isolated from the case, thus you may apply to a positive or negative ground system.

 Battery Output: See page 3, Section G for programming per battery type.

 Output to Load: terminals for plus and minus.

 Fuse note: We recommend a 15 amp fuse be installed on the hot leg at battery.

 Battery/Output wires size (recommended): 16 AWG
 Terminal Block maximum wire size (recommended): 10 AWG

C) Alarm Contacts, Form C (Isolated):

 Form C Contacts for remote monitor: Activate upon:
 F1. AC Power Fail
 F2. Low Battery, ___ V DC - @ 70% Discharge Point*, i.e. 30 capacity remains
 F3. Charger Power Circuit Fail
status of the battery, i.e., trickle charge, fast charge or recovery charge. Batt will illuminate and the LED Diagnosis’ LED continues to show the alarm.

If the sensor is not connected or if the sensor is defective, the LED Low ‘outside its range (temp. sensor)’ alarm is signalled with code 7 blink. If the battery temperature is less than -20° C or greater than +60° C, an alarm will be sounded.

Float: 25.32V = 26.76V - (40 x .003 x 12)

Voltage @ 20° = 26.76

Eg. Sensor Temp = 60°

Fast Charge = Voltage @ 20° C - (Sensor Temp ° - 20°) x .005 x number of cells)

Float Voltage = Voltage @ 20° C - (Sensor Temp ° - 20°) x .003 x number of cells)

Table 3: Absorption Charge Voltage & Float Charge Voltage Settings

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Battery Type</th>
<th>Voltage @ 20°C</th>
<th>Temperature vs Charging Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Open</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Gel</td>
<td>Gel</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Fast charge</td>
<td>Fast charge</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Alarm Contacts

<table>
<thead>
<tr>
<th>Contact</th>
<th>1 AC Fail LED</th>
<th>2 Low Battery LED</th>
<th>3 Diagnosis LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td>closed</td>
<td>closed</td>
<td>off</td>
</tr>
<tr>
<td>5-7</td>
<td>open</td>
<td>open</td>
<td>off</td>
</tr>
<tr>
<td>8-9</td>
<td>closed</td>
<td>open</td>
<td>off</td>
</tr>
<tr>
<td>8-10</td>
<td>closed</td>
<td>closed</td>
<td>off</td>
</tr>
</tbody>
</table>

* Labeled Low Battery or Battery Replacement on Front Panel

Relay Contact Rating:
Max. DC: 30 VDC, 1 amp; AC: 60 VAC, 1 amp; Resistive load (EN 60947-4-1)
Min. 1mA at 5 VDC

D) Optional Battery Temperature Compensation Sensor P/N: 468-4510-0

To install, remove the access tab in the front panel decal labeled AUX 1, install the Temp. Sensor into the RJ-45 connector. Attach sensor to side of battery using RTV silicone.

The sensor will vary the battery charging voltage depending on the battery’s temperature and charge program setting.

Float Voltage = Voltage @ 20° C - (Sensor Temp ° - 20°) x .003 x number of cells)
Fast Charge = Voltage @ 20° C - (Sensor Temp ° - 20°) x .005 x number of cells)
Eg. Sensor Temp = 60°
Voltage @ 20° = 26.76
Battery Cells = 12
Float: 25.32V = 26.76V - (40 x .003 x 12)

If the battery temperature is less than -20° C or greater than +60° C, an ‘outside its range (temp. sensor)’ alarm is signalled with code 7 blink.

If the sensor is not connected or if the sensor is defective, the LED Low Batt will illuminate and the LED Diagnosis’ LED continues to show the status of the battery, i.e., trickle charge, fast charge or recovery charge.
4) Settings

A) Battery Type/Charge Curve
Charge curve per battery type: via programming jumpers inserted on bottom panel of unit right side.

Using programming jumper tabs provided and a small needle nose pliers, insert programming jumpers to select float voltage and enable absorption voltage per battery type. Caution, do not program unit while connected to power.

Table 4: Battery Selection/Absorption Charge

<table>
<thead>
<tr>
<th>Battery Type Selection</th>
<th>Float Charge/ Jumper Insert Position</th>
<th>Absorption Charge Enable/ Jumper Insert Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Lead (Default)</td>
<td>None</td>
<td>Pos. 5</td>
</tr>
<tr>
<td></td>
<td>26.76 VDC</td>
<td>28.8 VDC</td>
</tr>
<tr>
<td>Sealed Lead Low</td>
<td>Pos. 1</td>
<td>Pos. 5</td>
</tr>
<tr>
<td>Insert Jumper: Pos. 1</td>
<td>27.0 VDC</td>
<td>28.8 VDC</td>
</tr>
<tr>
<td>Sealed Lead High</td>
<td>Pos. 2</td>
<td>Pos. 5</td>
</tr>
<tr>
<td>Insert Jumper: Pos. 2</td>
<td>27.24 VDC</td>
<td>28.8 VDC</td>
</tr>
<tr>
<td>Gel Battery</td>
<td>Pos. 3</td>
<td>Pos. 5</td>
</tr>
<tr>
<td>Insert Jumper: Pos. 3</td>
<td>27.6 VDC</td>
<td>28.8 VDC</td>
</tr>
</tbody>
</table>

Absorption Note:
Depending upon load and battery size, Absorption charging mode may cause intermittent trip of the battery charger/rectifier fail alarm contacts. We recommend not installing the Absorption jumper for stand-by battery applications.

B) Battery Charge Current Limit/Battery Charge Level

Allows setting maximum current flow to battery during recharge cycle- use when low amp-hour batteries are applied to system to prevent overheating when recovering dead batteries. Adjustment range 20-100% of available charge current. (Available charge current = unit output rating of 10 amps minus load demand. Note: the unit has a load priority circuit, all produced power is made available to the load, remaining power is available for battery charging).

To set, use small slotted screw driver to rotate selector dial. Set dial between 10 to 20% of battery capacity (Amp Hours).
5) Operation

A) Status Indicator LED’s

1. Power source: Mains or back up
 i. AC OK (LED Off)
 or
 AC Fail
 ii. Operating on battery backup power
 (LED On) red

2. Low battery

LED illuminates when:
 - Low Battery @ 70% depleted (22.8V), i.e. 30% capacity remains

Charger output status system diagnosis and Fault mode diagnosis: by Table 6: Status Indicator LEDs

<table>
<thead>
<tr>
<th>Monitoring Control</th>
<th>State</th>
<th>LED Diagnosis (No.8)</th>
<th>LED Battery Fault No.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging Type</td>
<td>Float</td>
<td>1 Blink/sec</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Absorption</td>
<td>2 Blink/sec</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>5 Blink/sec</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Reverse polarity or</td>
<td>1 Blink/pause*</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>high battery Voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Battery Not connected,</td>
<td>2 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>no output power</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Over Load or short</td>
<td>4 Blink/pause .-------</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>circuit on the load</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low battery: 45.6 volts</td>
<td>5 Blink/pause .-------</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Temp. Sensor outside</td>
<td>7 Blink/pause .-------</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>its range</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boost condition; battery discharge after 4 min. of overload.</td>
<td>8 Blink/pause .-------</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Internal fault</td>
<td>9 Blink/pause .-------</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Low battery detected</td>
<td>10 Blink/pause .------</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>when system activated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>by battery start button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with no ac input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Pause: 1 Second

B) LVD

The unit contains a low voltage load disconnect that activates at 18 volts (1.5 vpc) which is factory set and cannot be user modified.

6) Protection

On the AC Input: the device is equipped with an internal fuse. If the internal fuse is blown, it is most probable that there is a fault in the unit. If this occurs, the unit must be returned to the factory.

On the DC Ouput Battery and Load: The device is electronically protected.

Reverse polarity: the module is automatically protected against reverse of battery polarity and connection of reverse polarity.
Over current and output short circuit: the unit limits the output current. Low voltage disconnect protects battery from deep discharge.

Thermal protection
Operating temperature range -12 to 70°C. Unit will produce full rated power on continuous basis to 50°C, however; system load must be reduced by 2.5% per 1°C for continuous operation above 50°C. If the temperature reaches 70°C, the unit will reduce its maximum output to approximately 50% of its rating. If the temperature exceeds 70°C, the unit will shut off and restart once temperature drops.

7) Specifications

Input:
- **Voltage:** 90-135/ 180-305 47-63 hz
- **Amperage:** 3.3 @ 120 VAC / 2.2 @ 230 VAC
- **Output:** 24 volts, 10 amps total available to power loads and charge battery, with load priority distribution.
- **Peak:** 30 amps 4 seconds (with battery power boost)
- **Low Voltage Disconnect Point:** 18 VDC

Output ground isolated from case, may be used in positive ground applications. LVD function is lost

Front Panel LED Indicators:
- Power Source: operating on back up – red LED
- Battery and System Diagnostics (via blink code)

Settings/Selectors:
- Battery Type: AGM, Sealed Lead Acid, Gel-Cell
- Battery Charge Current Limit: 20 - 100% of charge amperage rating

Alarm Contacts (form C): Active:
- AC Fail
- Low Battery, 22.8V DC: indicating 70% battery discharge point (i.e. 30% capacity remains based on 2 - 5 amp continuous load on 100 - 150 AH battery)
- Charger/Power Circuit Failure

Operating Temperature: -12 to 70°C. Continuous to 50°, de-rate 2.5% per °C >50° C

Cooling: Free air convection

Efficiency: 91%

Humidity: to 95%, to 25°C

Protection:
- Low Voltage disconnect at 1.5 volts per cell (18 VDC)
- Internal fuse
- Current limiting
- Short circuit
- Reverse polarity
- Thermal overload shut down and recovery
- IP 20
- Designed to UL 1950

Terminal Blocks: Screw type

Mounting: DIN Rail Bracket 35 mm

Auxiliary Jacks
AUX 1: Battery Temperature Compensation via optional Battery Temp. Sensor, P/N 468-4510-0, with RJ-45 connector
8) Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
<th>Section</th>
</tr>
</thead>
</table>
| A. Battery requires excessive re-charge time | 1. Load at or near max. recommended load providing minimal current available for charging
2. Charging level current set to low | 1. Reduce load or split load between two separate DIN UPS units
2. Adjust “Battery Charging Level” control knob to higher level | |
| B. Load turns off after a couple of seconds when running on battery | 1. Time buffer set to incorrect position
2. Batteries not charged, due to high load demand | 1. Verify correct setting with manual
2. Reduce load or split load between two separate DIN UPS units | |
| C. No absorption voltage | 1. Absorption jumper not installed | 1. Install provided jumper in position 5 | |
| D. Unit does not turn on | 1. AC input is 115 VAC, no jumper wire installed | 1. Install 115V jumper wire across j1 and j2 | |
| E. Trips AC input breaker | 1. AC shorted to case
2. Defective unit | 1. Verify correct AC input wiring
2. Contact technical service | |
| F. No output | 1. DC output wired backwards or shorted
2. No AC input
3. Excessive temperature or blocked ventilation
4. Defective unit | 1. Remove AC input and check DC wiring
2. Verify correct AC input and jumper wire installed if powering from 115 VAC
3. Improve ventilation, unblock vent holes
4. Contact technical service | |
| G. No voltage on battery output terminals | 1. No battery installed (voltage required for battery output to turn on)
2. Missing or blown battery wiring fuse | 1. Install batteries
2. Replace missing or blown battery wiring fuse | |
| H. Diagnosis LEDs always blinking | 1. Normal operation | 1. Refer to Chart 2: Diagnosis Table | |

9) Warranty

Newmar warrants that the BDS-DIN-UPS 24-10 DIN Rail UPS to be free from defects in material and workmanship for two years from date of purchase. If a problem with your BDS-DIN-UPS 24-10, or if you have any questions about the installation and proper operation of the unit, please contact NEWMAR's Technical Services Department:

Phone: 714-751-0488 - From the hours of 7:30 a.m. to 5:00 p.m. weekdays, P.S.T.;
Fax: 714-896-9679
E-mail: techservice@newmarpower.com
TOP MOUNTING LIP

DETAIL B
SCALE 1:1

0.381
0.381
0.781
0.781
0.125
4.00

DETAIL A
SCALE 1:1

0.381
0.381
0.781
0.781
0.125
4.00

BOTTOM MOUNTING LIP
Notes:
1) BDS unit factory wired for 115 VAC Input
see BDS-DIN UPS manual for 220VAC wiring.