Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Overview/Quick Start</td>
<td>2-3</td>
<td>5) Settings/Programming</td>
<td>6</td>
</tr>
<tr>
<td>2) General Information</td>
<td>3</td>
<td>A) Battery Type/Charge Curve</td>
<td>6</td>
</tr>
<tr>
<td>Materials Provided</td>
<td>4</td>
<td>B) Time Charge Current Limit/Battery Charge Level</td>
<td>7</td>
</tr>
<tr>
<td>Optional Equipment</td>
<td>4</td>
<td>C) System Settings</td>
<td>7</td>
</tr>
<tr>
<td>3) Safety Information</td>
<td>4</td>
<td>6) Operation</td>
<td>8</td>
</tr>
<tr>
<td>4) Installation/Wiring</td>
<td>4</td>
<td>A) Battery Start w/o AC Present</td>
<td>8</td>
</tr>
<tr>
<td>A) Mounting</td>
<td>4</td>
<td>Push Button</td>
<td></td>
</tr>
<tr>
<td>B) Wiring</td>
<td>5</td>
<td>B) Status Indicator LED’s</td>
<td>8</td>
</tr>
<tr>
<td>1. Diagram</td>
<td>5</td>
<td>C) LVD</td>
<td>8</td>
</tr>
<tr>
<td>2. AC Input</td>
<td>5</td>
<td>7) Protection</td>
<td>8</td>
</tr>
<tr>
<td>3. Output</td>
<td>5</td>
<td>8) Specifications/Dimensional Drawing</td>
<td>9</td>
</tr>
<tr>
<td>C) Alarm Contacts, Form C</td>
<td>5</td>
<td>9) Troubleshooting</td>
<td>10</td>
</tr>
<tr>
<td>D) Temperature Compensation Sensor</td>
<td>5</td>
<td>10) Warranty</td>
<td>10</td>
</tr>
</tbody>
</table>
1) Overview/Quick Start

Figure 1: Function/Wiring Overview

A) AC Input 90 - 305 VAC: Wire Input Block (lettered left to right)
 a) AC Hot
 b) Neutral
 c) Earth Ground
B) Battery Output: one terminal each for plus and minus. See page 5 for details.
C) Battery Charge Current Limit: Allows setting maximum current flow to battery during recharge cycle, use when low amp-hour batteries are applied to system to prevent overheating when recovering dead batteries. Adjustment range 20-100% of available charge current. (Available charge current = unit output rating of 10 amps - load demand. Note 1: The unit has a load priority circuit, all produced power is made available to the load, remaining power is available for battery charging). See page 7 for details. Note 2: If enabling the battery test feature which alerts the user to a battery problem (see table 1, “Battery Test On”), the Battery Charge Level adjustment must be set at 10 - 20% of battery amp/hour capacity in order for the DIN UPS to accurately diagnose a battery fault.
E) Output to Load: The unit has a load priority circuit, all produced power is made available to the load, remaining power is available for battery charging. See page 5 for details.
F) Form C Contacts: Activate upon:
 F1. AC Power Fail
 F2. Low Battery: (11.25V DC)
 F3. Charger Power Circuit Fail
 See page 5 for details.
G) System Settings: via plug-in jumper programing terminals located on bottom of the unit.
 a. Install jumper per illustration below (Table 1) to:
 i. Select float voltage per Battery Type and enable Absorption Charge (see page 7 for details)
 See page 8 for details on functional settings.
H) Status Indicator LED’s
 1. AC Power Fail: Operating on battery back-up power (LED On). LED extinguishes when AC is present.
 2. Low battery @ 70% discharge point, i.e. 30 capacity remains
 3. Charger Output Status and Fault Mode Diagnosis: by blink code:
 Charge Status Blink Code:
 • Bulk: 5 blink/second - Recovery
 • Absorption: 2 blink/second - Bulk
 • Float: 1 blink/second
 Fault Mode Diagnosis Blink Code:
 • Reverse Polarity: 1 blink, pause
 • Battery Not Connected: 2 blink, pause
 • Overload or Short Circuit: 4 blink, pause
 • Low battery alarm: steady on, 5 blink, pause
 • Bad Thermal Sensor: 7 blink, pause and diagnostic
 See page 9 for details.
I) Battery Start w/o AC Present Push Button: If system shuts down due to loss of AC and battery, pressing this push button will allow battery to reconnect and supply the load if sufficient battery voltage is present.
Table 1: System Settings: Battery Selection/Absorption Charge and Functional Settings

<table>
<thead>
<tr>
<th>Battery Type Selection</th>
<th>Float Charge/Jumper Insert Position</th>
<th>Absorption Charge Enable/Jumper Insert Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Lead (Default)</td>
<td>[Diagram]</td>
<td>None None</td>
</tr>
<tr>
<td></td>
<td>13.4 VDC</td>
<td>14.4 VDC</td>
</tr>
<tr>
<td>Sealed Lead Low</td>
<td>Insert Jumper: Pos. 1</td>
<td>13.5 VDC</td>
</tr>
<tr>
<td></td>
<td>Pos. 1</td>
<td>Pos. 6 Pos. 6</td>
</tr>
<tr>
<td>Sealed Lead High</td>
<td>Insert Jumper: Pos. 2</td>
<td>13.6 VDC</td>
</tr>
<tr>
<td></td>
<td>Pos. 2</td>
<td>Pos. 6 Pos. 6</td>
</tr>
<tr>
<td>Gel Battery</td>
<td>Insert Jumper: Pos. 3</td>
<td>13.8 VDC</td>
</tr>
<tr>
<td></td>
<td>Pos. 3</td>
<td>Pos. 6 Pos. 6</td>
</tr>
</tbody>
</table>

*Note, voltages above are at 20˚ C with no battery temperature sensor connected.

Absorption Note:
Depending upon load and battery size, Absorption charging mode may cause intermittent trip of the battery charger/rectifier fail alarm contacts. We recommend not installing the Absorption jumper for stand-by battery applications.

2) General Information

This DIN rail mount DC UPS combines all system power functions: power supply, battery charger, UPS circuitry and status monitoring in one compact unit that produces 12 volt, 10 amps allocated via outputs for load and battery:

- Load output: "load priority" distribution ensures power is dedicated first to the load, with remainder then allocated to battery charging, thus preventing a discharged battery from impacting operation of critical loads.
- Battery output: 3 step charging for rapid battery recovery, programmable for battery type, with optional temperature compensation sensor.
- Battery automatically on line to support load anytime AC fails.
- Low voltage disconnect protects battery from total discharge.
- High operating temperature range to 70˚ C.
This DC UPS is fitted with special monitoring and alarm features designed to comply with the latest codes related to public safety in-building wireless communications back-up power requirements, as set forth by NFPA, section 1221.

In normal operation, the unit supplies power to the transmitter/antennas and maintains the back-up battery. Should an event occur that could cause interruption in power, self-diagnosis signals are sent via form C contacts notifying the network operators the system is running in a critical power condition and that potential communications failure is imminent.

1) AC Fail
2) Low battery voltage indicating battery discharged by 70% (i.e. 30% capacity remaining)
3) Internal charger/power circuit fail

Materials Provided:
1 ea. DIN-UPS unit with integral DIN rail mount clip
3 ea. Jumper tabs for programming

Tools Required
Small 1/8” wide Flat Head screwdriver for terminal block connectors
Large 1/4” wide Flat Head screwdriver for disengaging DIN Rail clip

Optional Equipment:
Temperature Compensation Sensor, P/N: 468-4510-0

3) **Safety Information**

WARNING – Explosion Hazard. Do not disconnect loads or battery unless AC input and battery have been switched off.
WARNING – Explosion Hazard. This product is not certified for Class 1, Div 2 applications.
WARNING – Switch off or remove AC input and battery power before wiring the DIN-UPS 12-10. Never work on the DIN UPS when it is connected to AC input and battery. The BDS-DIN-UPS must be installed in accordance with UL508 or local electrical codes depending upon the application. The BDS-DIN-UPS should have a suitability sized AC input circuit breaker feeding its AC input. See specification section for maximum AC input draw for your input voltage for circuit breaker sizing.

CAUTION: Hot surface. Avoid touching the DIN UPS case while operating at or near its full load capacity. Remove AC and battery power and allow BDS-DIN UPS at least 10 minutes to cool before removing from DIN Rail.

4) **Installation/Wiring**

A) **Mounting:**
The unit is designed for 35 mm DIN rail mounting in an enclosure or on a rackmounted DIN Rail bracket and relies on convection (free air) cooling, thus must have a minimum of 4" (10 cm) of open space above and below the BDS-DIN-UPS in order to assure sufficient air flow. We recommend approximately 1/2" (10mm) spacing between adjacent DIN Rail mounted devices. Note, that depending on the ambient temperature and load of the device, the temperature of the case can become hot to the touch.

The unit is designed for vertical mount (+/- 5˚) and has an integral clip on the back to secure it to the rail. To mount, place the top tabs over the top of the DIN rail, and using a long slotted screw driver insert it in the groove at the bottom of the bracket and twist which will extend the spring loaded mounting bracket downward allowing the unit to be positioned against the DIN rail, release the bracket with BDS-DIN-UPS positioned vertically and the rail will be captured and the unit secured.
B) Wiring

1. AC Input: Terminal Block (lettered left to right) - Figure 4
 a) AC Hot/Line: 90 - 305 VAC
 b) Neutral
 c) Earth Ground
 Recommended wire size: 16 AWG

2. Output

The unit has two outputs: one connects to the Load and the other to the back-up battery. Note: the unit has a load priority circuit, all produced power first is made available to the load with remaining power made available for battery charging. The DIN UPS is isolated from the case, thus you may apply to a positive or negative ground system.

Battery Output: See page 2, Section G for programming per battery type.

Output to Load: terminals for plus and minus.

Fuse note: We recommend a 15 amp fuse or circuit breaker be installed on the hot leg at battery.

Battery/Output wires size (recommended): 16 AWG
Terminal Block maximum wire size (recommended): 10 AWG

C) Alarm Contacts, Form C (Isolated):

Form C Contacts for remote monitor: Activate upon:
 a. AC Power Fail
 b. Low Battery, 11.25V DC - @ 70% Discharge Point*, i.e. 30% capacity remains
 c. Charger/Power Circuit Fail

* Applicable to battery systems with 2-5 amp continuous loads with 100 - 150 AH capacity

Table 2: Alarm Contacts

<table>
<thead>
<tr>
<th>Input</th>
<th>5-6</th>
<th>5-7</th>
<th>8-9</th>
<th>8-10</th>
<th>1 AC Fail LED</th>
<th>2 Low Battery LED</th>
<th>3 Diagnosis LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC only</td>
<td>closed</td>
<td>open</td>
<td>open</td>
<td>closed</td>
<td>off</td>
<td>on</td>
<td>2 Blink-Pause</td>
</tr>
<tr>
<td>AC + Batt</td>
<td>closed</td>
<td>open</td>
<td>closed</td>
<td>open</td>
<td>off</td>
<td>off</td>
<td>1 Blink/sec</td>
</tr>
<tr>
<td>Batt only</td>
<td>open</td>
<td>closed</td>
<td>closed</td>
<td>open</td>
<td>on</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>Low Batt</td>
<td>open</td>
<td>closed</td>
<td>open</td>
<td>closed</td>
<td>on</td>
<td>on</td>
<td>off</td>
</tr>
</tbody>
</table>

* Labeled Low Battery or Battery Replacement on Front Panel

Relay Contact Rating:
Max: DC; 30 VDC, 1 amp; AC: 60 VAC, 1 amp: Resistive load (EN 60947-4-1)
Min. 1mA at 5 VDC

D) Optional Battery Temperature Compensation Sensor P/N: 468-4510-0

To install, remove the access tab in the front panel decal labeled AUX Out, Figure 9, install the Temp. Sensor into the RJ-45 connector. Attach sensor to side of battery using RTV silicone.

The sensor will vary the battery charging voltage depending on the battery’s temperature and charge program setting at a rate of 0.018 volts per degree °C.
Table 3: Absorption Charge Voltage & Float Charge Voltage Settings with Temperature Sensor Installed

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>Voltage (VDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.5</td>
</tr>
<tr>
<td>10</td>
<td>15.0</td>
</tr>
<tr>
<td>20</td>
<td>14.5</td>
</tr>
<tr>
<td>30</td>
<td>14.0</td>
</tr>
<tr>
<td>40</td>
<td>13.5</td>
</tr>
<tr>
<td>50</td>
<td>13.0</td>
</tr>
<tr>
<td>60</td>
<td>12.5</td>
</tr>
<tr>
<td>70</td>
<td>12.0</td>
</tr>
<tr>
<td>80</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Formula for determining temperature compensated Float or Absorption voltage based on battery temperature:

Float

Formula: \(\text{Float Voltage} = (13. \times \text{VDC} - \text{sensor temp. - 20° C}) \times 0.018 \text{ VDC} \)

* see Table 1 for Float voltage based on battery type selected

Example Conditions
- Battery selection jumper installed for 13.6 VDC Sealed Lead High Float voltage
- Battery temperature = 60° C

\[\text{Float voltage} = (13.6 \text{ VDC} - (60° \text{C} - 20° \text{C}) \times 0.018 \text{ VDC}) = \\
13.6 \text{ VDC} - 0.72 \text{ VDC} = \\
12.88 \text{ VDC Float @ 60° C} \]

Fast Charge/Absorption

Formula: \(\text{Fast Charge Voltage} = (14.4 \text{ VDC} - \text{sensor temp. - 20° C}) \times 0.018 \text{ VDC} \)

Example Conditions:
- Fast charge/Absorption: 14.4 VDC (same for all battery type selections)
- Battery temperature = 60° C

\[\text{Fast Charge/Absorption voltage} = (14.4 \text{ VDC} - 60° \text{C} - 20° \text{C}) \times 0.018 \text{ VDC}) = \\
14.4 \text{ VDC} - 0.72 \text{ VDC} = \\
13.68 \text{ VDC Absorption @ 60° C} \]

If the battery temperature is less than -20° C or greater than +60° C, an 'outside its range (temp. sensor)' alarm is signalled with 7 blink code.

5) Settings/Programming

A) Battery Type/Charge Curve

Charge curve per battery type: via programing jumpers insterted on bottom panel of unit right side

Using programming jumper tabs provided and a small needle nose pliers, insert programming jumpers to select float voltage and enable absorption voltage per per battery type. Caution do not program unit while connected to power.
B) Battery Charge Current Limit/Battery Charge Level

Allows setting maximum current flow to battery during recharge cycle—use when low amp-hour batteries are applied to system to prevent overheating when recovering dead batteries. Adjustment range 20-100% of available charge current. (Available charge current = unit output rating of 10 amps minus load demand. Note: the unit has a load priority circuit, all produced power is made available to the load, remaining power is available for battery charging). Note, if enabling the battery test feature which alerts the user to a battery problem (see Table 4, “Battery Test On”), the Battery Charge Level adjustment must be set at 10-20% of battery Amp Hour capacity in order for the DIN UPS to accurately diagnose a battery fault.

To set, use small slotted screw driver to rotate selector dial to desired setting.

C) System Settings

Via plug-in jumper, programming terminals located on bottom right of the unit. Install jumper per illustration below to Enable Battery Test.

Table 5: Functional Settings

<table>
<thead>
<tr>
<th>Function Setting</th>
<th>Jumper Insert Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Test ON</td>
<td>Pos. 4</td>
</tr>
</tbody>
</table>

Insert jumper at position 4 to enable Periodic Battery condition test process. (Fault reported by LED diagnosis blink code, see Table 6):

- Battery wiring connection
- Battery efficiency/sulfation (impedance test)
- Shorted Cell

Absorption Note:
Depending upon load and battery size, Absorption charging mode may cause intermittent trip of the battery charger/rectifier fail alarm contacts. We recommend not installing the Absorption jumper for stand-by battery applications.
6) Operation

A) Battery Start without AC Present Push Button:
If the system shuts down due to loss of AC and battery power, pushing button will allow battery to come on line to supply
the load. Press and hold for 3 seconds to re-connect battery to output. Note, if LVD has activated and battery voltage has
not recovered above disconnect point, the unit will not cycle on.

B) Status Indicator LED’s
1. Power source: Mains or back up
 i. AC OK (AC Fail LED Off)
 or
 AC Fail
 ii. Operating on battery backup power
 (AC Fail LED On) red
2. Low battery, or battery replacement
 LED illuminates when:
 ▪ Low Battery @ 70% depleted (11.25V DC), i.e. 30 capacity remains 3
diagnosis LED.

3. Charger output status system diagnosis and Fault mode diagnosis: by blink code
 (Table 6 below).

Table 6: Status Indicator LEDs

<table>
<thead>
<tr>
<th>Monitoring Control</th>
<th>State</th>
<th>LED Diagnosis (No.8)</th>
<th>LED Battery Fault No.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging Type</td>
<td>Float</td>
<td>1 Blink/\text{sec}</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Absorption</td>
<td>2 Blink/\text{sec}</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>5 Blink/\text{sec}</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Reverse polarity or</td>
<td>1 Blink/\text{pause}</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>high battery Voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Battery Not connected,</td>
<td>2 Blink/\text{pause}</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>no output power</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Over Load or short</td>
<td>4 Blink/\text{pause}</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>circuit on the load</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low battery: 45.6 volts</td>
<td>5 Blink/\text{pause}</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Temp. Sensor outside</td>
<td>7 Blink/\text{pause}</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>its range</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boost condition: battery</td>
<td>8 Blink/\text{pause}</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>discharge after 4 min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of overload.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal fault</td>
<td>9 Blink/\text{pause}</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Low battery detected</td>
<td>10 Blink/\text{pause}</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>when system activated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>by battery start button with no ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Pause: 1 Second

C) LVD
The unit contains a low voltage load disconnect that activates at 9 volts (1.5 vpc) which is factory set and cannot be user
modified.

6) Protection
On the AC Input: the device is equipped with an internal fuse. If the internal fuse is blown, it is most probable that there is
a fault in the unit. If this occurs, the unit must be returned to the factory.
On the DC Output Battery and Load: The device is electrically protected.

Reverse polarity: the module is automatically protected against reverse of battery polarity and connection of reverse
polarity.
Over current and output short circuit: the unit limits the output current. Low voltage disconnect protects battery from deep discharge.

Thermal Protection
Operating temperature range -12 to 70˚ C. Unit will produce full rated power on continuous basis to 50˚ C, however; system load must be reduced by 2.5% per 1˚ for continuous operation above 50˚ C. If the temperature reaches 70˚ C, the unit will reduce its maximum output to approximately 50% of its rating. If the temperature exceeds 70˚ C, the unit will shut off and restart once temperature drops.

8) Specifications

Input:
- **Voltage:** 90 - 305, 47-63 hz
- **Amperage:** 2.8 @ 120 VAC / 1.3 @ 230 VAC

Output: 12 volts, 10 amps total available to power loads and charge battery, with load priority distribution.

Peak: 30 amps 4 seconds (with battery power boost)

Low Voltage Disconnect Point: 9 VDC

Output ground isolated from case, may be used in positive ground applications. LVD function is lost

Front Panel LED Indicators:
- Power Source: operating on back up – red AC Fail LED
- Battery and System Diagnostics (via blink code)

Settings/Selectors:
- Battery Type: AGM, Sealed Lead Acid, Gel-Cell
- Battery Charge Current Limit: 20 - 100% of charge amperage rating

Alarm Contacts (form C): Active:
- AC Fail (on battery back-up)
- Low Battery 11.25V DC: indicating 70% battery discharge point (i.e. 30 capacity remains based on 2 - 5 amp continuous load on 100 - 150 AH battery)
- Charge Fail contacts

Operating Temperature: -12 to 70˚ C. Continuous to 50˚, de-rate 2.5% per˚ C >50˚ C

Cooling: Free air convection

Efficiency: 90 @ 50% load

Humidity: to 95%, to 25˚ C

Protection:
- Low Voltage disconnect at 1.5 volts per cell (9 VDC)
- Internal fuse
- Current limiting
- Short circuit
- Reverse polarity
- Thermal overload shut down and recovery
- IP 20

Case Size: 4.5” H x 2.6” W x 5.3” D

Design Standards:
- CE Mark
- Designed to UL 1950

Terminal Blocks: Screw type

Mounting: DIN Rail Bracket 35 mm
9) Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Battery requires excessive</td>
<td>1. Load at or near max. recommended load providing minimal current available for</td>
<td>1. Reduce load or split load between two separate DIN UPS units</td>
</tr>
<tr>
<td>re-charge time</td>
<td>charging</td>
<td>2. Charging level current set to low</td>
</tr>
<tr>
<td></td>
<td>2. Charging level current set to low</td>
<td></td>
</tr>
<tr>
<td>B. Load turns off after a couple of</td>
<td>1. Batteries not charged, due to high load demand</td>
<td>1. Reduce load or split load between two separate DIN UPS units</td>
</tr>
<tr>
<td>seconds when running on battery</td>
<td></td>
<td>2. Reduce load or split load between two separate DIN UPS units</td>
</tr>
<tr>
<td></td>
<td>2. Charging level current set to low</td>
<td></td>
</tr>
<tr>
<td>C. No absorption voltage</td>
<td>1. Absorption jumper not installed</td>
<td>1. Install provided jumper in position 5</td>
</tr>
<tr>
<td>D. Trips AC input breaker</td>
<td>1. AC shorted to case</td>
<td>1. Verify correct AC input wiring</td>
</tr>
<tr>
<td></td>
<td>2. Defective unit</td>
<td>2. Contact technical service</td>
</tr>
<tr>
<td>E. No output</td>
<td>1. DC output wired backwards or shorted</td>
<td>1. Remove AC input and check DC wiring</td>
</tr>
<tr>
<td></td>
<td>2. No AC input</td>
<td>2. Verify correct AC input</td>
</tr>
<tr>
<td></td>
<td>3. Excessive temperature or blocked ventilation</td>
<td>3. Improve ventilation, unblock vent holes</td>
</tr>
<tr>
<td></td>
<td>4. Defective unit</td>
<td>4. Contact technical service</td>
</tr>
<tr>
<td>F. No voltage on battery output</td>
<td>1. No battery installed (voltage required for battery output to turn on)</td>
<td>1. Install batteries</td>
</tr>
<tr>
<td>output terminals</td>
<td>2. Missing or blown battery wiring fuse</td>
<td>2. Replace missing or blown battery wiring fuse</td>
</tr>
<tr>
<td>G. Diagnosis LEDs always blinking</td>
<td>1. Normal operation</td>
<td>1. Refer to Chart 2: Diagnosis Table</td>
</tr>
</tbody>
</table>

10) Warranty

Newmar warrants that the BDS-DIN-UPS 12-10 DIN Rail DC UPS/Battery Detection System to be free from defects in material and workmanship for two years from date of purchase. If a problem with your BDS-DIN-UPS 12-10, or if you have any questions about the installation and proper operation of the unit, please contact NEWMAR’s Technical Services Department:

Phone: 714-751-0488 - From the hours of 7:30 a.m. to 5:00 p.m. weekdays, P.S.T.;
Fax: 714-896-9679
E-mail: techservice@newmarpower.com