DIN Rail UPS
Model: DIN-UPS 48-5
Installation/Operation Manual

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Start</td>
<td>2</td>
<td>4) Settings</td>
<td>6</td>
</tr>
<tr>
<td>1) General Information</td>
<td>4</td>
<td>A) Battery Type/Charge Curve</td>
<td>6</td>
</tr>
<tr>
<td>Materials Provided</td>
<td>4</td>
<td>B) Time Charge Current Limit/Battery Charge Level</td>
<td>7</td>
</tr>
<tr>
<td>Optional Equipment</td>
<td>4</td>
<td>C) System Settings</td>
<td>7</td>
</tr>
<tr>
<td>2) Safety Information</td>
<td>4</td>
<td>5) Operation</td>
<td>8</td>
</tr>
<tr>
<td>3) Installation/Wiring</td>
<td>4</td>
<td>A) Status Indicator LED’s</td>
<td>8</td>
</tr>
<tr>
<td>A) Mounting</td>
<td>4</td>
<td>B) LVD</td>
<td>9</td>
</tr>
<tr>
<td>B) Wiring</td>
<td>5</td>
<td>6) Protection</td>
<td>9</td>
</tr>
<tr>
<td>1. AC Input</td>
<td>5</td>
<td>7) Specifications</td>
<td>9</td>
</tr>
<tr>
<td>2. Output</td>
<td>5</td>
<td>8) Troubleshooting</td>
<td>10</td>
</tr>
<tr>
<td>C) Alarm Contacts, Form C</td>
<td>5</td>
<td>9) Warranty</td>
<td>10</td>
</tr>
<tr>
<td>D) Temperature Compensation Sensor</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M-DINUPS485
AS OF 110416
Quick Start Guide

A) AC Input: Wire Input Block (lettered left to right)
 a) AC Hot 230 VAC: no jumper installed across j1 & j2
 AC Hot 115 VAC: wire jumper across j1 and j2
 b) Neutral
 c) Earth Ground
 j1 & j2) Jumper these two inputs for 115 VAC operation
 See page 5 for details.

B) Battery Output: one terminal each for plus and minus.
 See page 5 for details.

C) Battery Charge Current Limit: Allows setting maximum
 current flow to battery during recharge cycle, use when
 low amp-hour batteries are applied to system to prevent
 overheating when recovering dead batteries. Adjustment
 range 20-100% of available charge current. (Available
 charge current = unit output rating of 5 amps - load
 demand. Note: the unit has a load priority circuit, all
 produced power is made available to the load, remaining
 power is available for battery charging). See page 6
 for details.

D) Battery Temperature Sensor (optional): Plug in port
 (RJ-45). See page 6 for details.

E) Output to Load: The unit has a load priority circuit, all
 produced power is made available to the load, remaining
 power is available for battery charging. See page 5 for
 details.

F) Form C Contacts: Activate upon:
 a. AC power fail
 b. Low battery or poor battery condition
 See page 5 for details.

Mounting DIN DC UPS to DIN Rail

1. Insert flat head screwdriver in slot of bottom tab and twist to extend bracket

Removing DIN DC UPS from DIN Rail

1. Twist Twist

G) System Settings: via plug-in jumper programing terminals located on bottom of the unit.
 a. Install jumper per illustration below (Table 1) to:
 i. Select float voltage per Battery Type and enable Absorption Charge (see page page 7 for details)
 ii. Enable Battery Test (Functional Setting)
 See page 7 for details on functional settings.

H) Status Indicator LED’s
 1. AC Fail: Operating on battery back-up power (LED On). LED extinguishes when AC is present.
 2. Low battery, or poor battery condition
 3. Charger Output Status and Fault Mode Diagnosis: by blink code:

 Charge Status Blink Code:
 - Bulk: 5 blink/second - Recovery
 - Absorption: 2 blink/second - Bulk
 - Float: 1 blink/second

 Fault Mode Diagnosis Blink Code:
 - Reverse Polarity: 1 blink, pause
 - Battery Not Connected: 2 blink, pause
 - Overload or Short Circuit: 4 blink, pause
 - Bad Battery Wire Connection, or Bad Battery (internal impedance): 5 blink, pause
 - Bad Thermal Sensor: 7 blink, pause and diagnostic
 See page 8 for details.

Table 1: System Settings: Battery Selection/Absorption Charge and Functional Settings

<table>
<thead>
<tr>
<th>Battery Type Selection</th>
<th>Float Charge/ Jumper Insert Position</th>
<th>Absorption Charge Enable/ Jumper Insert Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Lead (Default)</td>
<td> Pos. 1</td>
<td> Pos. 5</td>
</tr>
<tr>
<td></td>
<td>53.5 VDC</td>
<td>57.6 VDC</td>
</tr>
<tr>
<td>Sealed Lead Low</td>
<td> Pos. 1</td>
<td> Pos. 5</td>
</tr>
<tr>
<td></td>
<td>54.0 VDC</td>
<td>57.6 VDC</td>
</tr>
<tr>
<td>Sealed Lead High</td>
<td> Pos. 2</td>
<td> Pos. 5</td>
</tr>
<tr>
<td></td>
<td>54.5 VDC</td>
<td>57.6 VDC</td>
</tr>
<tr>
<td>Gel Battery</td>
<td> Pos. 3</td>
<td> Pos. 5</td>
</tr>
<tr>
<td></td>
<td>55.2 VDC</td>
<td>57.6 VDC</td>
</tr>
</tbody>
</table>

* Note: voltages above are at 20˚ C with no battery temp. sensor connected.

Function Setting	Pos. 4	Insert jumper at position 4 to enable Periodic Battery condition test process. (Fault reported by LED diagnosis blink code, see Table 6):
Battery Test ON	![Diagram](5) Pos. 4	Battery wiring connection
Insert Jumper: Pos. 4		Battery efficiency/sulfation (impedance test)
		Shorted Cell
1) General Information

This DIN rail mount DC UPS Combines all system power functions: power supply, battery charger, UPS circuitry and status monitoring in one compact unit that produces 48 volt, 5 amps allocated via outputs for load and battery:

- Load output: “load priority” distribution ensures power is dedicated first to the load, with remainder then allocated to battery charging, thus preventing a discharged battery from impacting operation of critical loads.
- Battery output: 3 step charging for rapid battery recovery, programmable for battery type, with optional temperature compensation sensor
- Battery automatically on line to support load anytime AC fails
- Low voltage disconnect protects battery from total discharge
- Automatic periodic battery health diagnosis
- High operating temperature range to 70˚ C
- Alarm contacts: AC fail, battery status/condition

Materials Provided:
1 ea. DIN-UPS unit with integral DIN rail mount clip
3 ea. Jumper tabs for programming
1 ea. Jumper wire (orange) for 115 volt input operation

Optional Equipment:
Temperature Compensation Sensor, P/N: 468-4510-0

2) Safety Information

WARNING – Explosion Hazard. Do not disconnect loads or battery unless AC input and battery have been switched off.

WARNING – Explosion Hazard. Substitution of components may impair suitability for class I, Division 2.

WARNING – Switch off or remove AC input and battery power before wiring the DIN-UPS 48-5. Never work on the DIN UPS when it is connected to AC input and battery. The DIN UPS must be installed in accordance with UL508 or local electrical codes depending upon the application. The DIN UPS should have a suitability sized AC input circuit breaker feeding its AC input. See specification section for maximum AC input draw for your input voltage for circuit breaker sizing.

CAUTION: Hot surface. Avoid touching the DIN UPS case while operating at or near its full load capacity. Remove AC and battery power and allow DIN UPS at least 10 minutes to cool before removing from DIN Rail.

3) Installation/Wiring

A) Mounting:
The unit is designed for 35 mm DIN rail mounting in an enclosure and relies on convection (free air) cooling, thus must have a minimum vertical and horizontal distance to adjacent surface of 4” (10 cm) to this power supply in order to assure sufficient air flow. Note, that depending on the ambient temperature and load of the device, the temperature of the case can become hot to the touch.

The unit is designed for vertical mount (+/- 5˚) and has an integral clip on the back to secure it to the rail. To mount, place the top tabs over the top of the DIN rail, and using a long slotted screw driver insert it in the groove at the bottom of the bracket and twist which will extend the spring loaded mounting bracket downward allowing the unit to be positioned against the DIN rail, release the bracket with DIN UPS positioned vertically and the rail will be captured and the unit secured.

![Figure 2: Mounting](image1)

![Figure 3: Removing](image2)
B) Wiring

1. AC Input: Terminal Block (lettered left to right) - Figure 4

 a) AC Hot (note: install jumper provided across terminals j1 and j2 for 115 VAC input)
 b) Neutral
 c) Earth Ground

 J1 & J2: Jumper these two terminals for 115 VAC operation and apply 115V hot to term a and neutral to b

 Recommended wire size: 16 AWG

 Figure 4: AC Input Terminal Block

2. Output

 The unit has two outputs: one connects to the Load and the other to the back-up battery. Note: the unit has a load priority circuit, all produced power first is made available to the load with remaining power made available for battery charging. The DIN UPS is isolated from the case, thus you may apply to a positive or negative ground system.

 Battery Output: See page 3, Section G for programming per battery type.

 Output to Load: terminals for plus and minus.

 Fuse note: We recommend a 10 amp fuse be installed on the hot leg at battery.

 Battery/Output wires size (recommended): 16 AWG
 Terminal Block maximum wire size (recommended): 10 AWG

C) Alarm Contacts, Form C (Isolated):

 Form C Contacts for remote monitor: Activate upon:
 a. Main or back up power fail
 b. Low battery, or poor battery condition

 Figure 5: Output Terminals
Table 2: Alarm Contacts

<table>
<thead>
<tr>
<th>Input</th>
<th>5-6</th>
<th>5-7</th>
<th>8-9</th>
<th>8-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC only</td>
<td>closed</td>
<td>open</td>
<td>open</td>
<td>closed</td>
</tr>
<tr>
<td>AC + Batt</td>
<td>closed</td>
<td>open</td>
<td>closed</td>
<td>open</td>
</tr>
<tr>
<td>Batt only</td>
<td>open</td>
<td>closed</td>
<td>closed</td>
<td>open</td>
</tr>
<tr>
<td>Low Batt</td>
<td>open</td>
<td>closed</td>
<td>open</td>
<td>closed</td>
</tr>
</tbody>
</table>

Relay Contact Rating:
Max. DC: 30 VDC, 1 amp; AC: 60 VAC, 1 amp; Resistive load (EN 60947-4-1)
Min. 1mA at 5 VDC

D) Optional Battery Temperature Compensation Sensor P/N: 468-4510-0
To install, remove the access tab in the front panel decal labeled AUX 1, install the Temp. Sensor into the RJ-45 connector. Attach sensor to side of battery using RTV silicone.
The sensor will vary the battery charging voltage depending on the battery's temperature and charge program setting.

Table 3: Absorption Charge Voltage & Float Charge Voltage Settings

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Float: 50.64V</td>
<td>-20</td>
</tr>
<tr>
<td>Fast Charge: 53.5V</td>
<td>0</td>
</tr>
<tr>
<td>Battery Cells: 24</td>
<td></td>
</tr>
</tbody>
</table>

Float Voltage = Voltage @ 20° C - (Sensor Temp ° - 20°) x .003 x number of cells
Fast Charge = Voltage @ 20° C - (Sensor Temp ° - 20°) x .005 x number of cells
Eg. Sensor Temp = 60°
Voltage @ 20° = 53.5 (Open Lead)
Battery Cells = 24
Float: 50.64V = 53.5V - (40° x .003 x 24)

If the battery temperature is less than -20° C or greater than +60° C, an 'outside its range (temp. sensor)' alarm is signalled with code 7 blink.

If the sensor is not connected or if the sensor is defective, the LED Low Batt will illuminate and the LED Diagnosis' LED continues to show the status of the battery, i.e., trickle charge, fast charge or recovery charge.

4) Settings

A) Battery Type/Charge Curve
Charge curve per battery type: via programing jumpers inserted on bottom panel of unit right side.
Using programming jumper tabs provided and a small needle nose pliers, insert programming jumpers to select float voltage and enable absorption voltage per battery type. Caution, do not program unit while connected to power.
Table 4: Battery Selection/Absorption Charge

<table>
<thead>
<tr>
<th>Battery Type Selection</th>
<th>Float Charge/Jumper Insert Position</th>
<th>Absorption Charge Enable/Jumper Insert Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Lead (Default)</td>
<td>None</td>
<td>Pos. 5</td>
</tr>
<tr>
<td></td>
<td>53.5 VDC</td>
<td>57.6 VDC</td>
</tr>
<tr>
<td>Sealed Lead Low</td>
<td>Pos. 1</td>
<td>Pos. 5</td>
</tr>
<tr>
<td>Insert Jumper: Pos. 1</td>
<td>54.0 VDC</td>
<td>57.6 VDC</td>
</tr>
<tr>
<td>Sealed Lead High</td>
<td>Pos. 2</td>
<td>Pos. 5</td>
</tr>
<tr>
<td>Insert Jumper: Pos. 2</td>
<td>54.5 VDC</td>
<td>57.6 VDC</td>
</tr>
<tr>
<td>Gel Battery</td>
<td>Pos. 3</td>
<td>Pos. 5</td>
</tr>
<tr>
<td>Insert Jumper: Pos. 3</td>
<td>55.2 VDC</td>
<td>57.6 VDC</td>
</tr>
</tbody>
</table>

* Note: voltages above are at 20˚ C with no battery temp. sensor connected.

B) Battery Charge Current Limit/Battery Charge Level

Allows setting maximum current flow to battery during recharge cycle- use when low amp-hour batteries are applied to system to prevent overheating when recovering dead batteries. Adjustment range 20-100% of available charge current. (Available charge current = unit output rating of 10 amps minus load demand. Note: the unit has a load priority circuit, all produced power is made available to the load, remaining power is available for battery charging).

To set, use small slotted screw driver to rotate selector dial. Set dial between 10 to 20% of battery capacity (Amp Hours).

Figure 10: Current Limit/Battery Charge Level - Dial

![Current Limit/Battery Charge Level - Dial](image)

C) System Settings

Via plug-in jumper programing terminals located on bottom right of the unit. Install jumper per illustration below to Enable Battery Test.

Table 5: Functional Settings

<table>
<thead>
<tr>
<th>Function Setting</th>
<th>Insert jumper at position 4 to enable Periodic Battery condition test process. (Fault reported by LED diagnosis blink code, see Table 6):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Test ON</td>
<td>- Battery wiring connection</td>
</tr>
<tr>
<td>Insert Jumper: Pos. 4</td>
<td>- Battery efficiency/sulfation (impedance test)</td>
</tr>
<tr>
<td></td>
<td>- Shorted Cell</td>
</tr>
</tbody>
</table>

* Pos. 4
5) Operation

A) Status Indicator LED’s

1. Power source: Mains or back up
 i. AC OK (AC Fail LED Off)
 or
 ii. AC Fail: Operating on battery backup power (LED On) red

2. Low battery, or battery replacement

 LED illuminates when:
 ▪ Low Battery (capacity less than 30%)
 ▪ Bad connection to battery
 ▪ Battery requires replacement

3. Diagnosis LED.

Charger output status system diagnosis and Fault mode diagnosis: by blink code (Table 6 below).

Table 6: Status Indicator LEDs

<table>
<thead>
<tr>
<th>Monitoring Control</th>
<th>State</th>
<th>LED Diagnosis (No.8)</th>
<th>LED Battery Fault No.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging Type</td>
<td>Float</td>
<td>1 Blink/sec</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Absorption</td>
<td>2 Blink/sec</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>5 Blink/sec</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Reverse polarity or high battery Voltage</td>
<td>1 Blink/pause*</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Battery Not connected, no output power</td>
<td>2 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Battery shorted cell</td>
<td>3 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Over Load or short circuit on the load</td>
<td>4 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Bad battery; Internal impedance Bad or Bad battery wire connection</td>
<td>5 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Battery Life test not possible</td>
<td>6 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Temp. Sensor outside its range</td>
<td>7 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Boost condition; battery discharge after 4 min. of overload.</td>
<td>8 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Internal fault</td>
<td>9 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Low battery detected when system activated by battery start button with no ac input</td>
<td>10 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Life test not possible; Parallel mode on Slave Device</td>
<td>12 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Bad battery wire connection; Parallel mode on Slave Device</td>
<td>13 Blink/pause</td>
<td>ON</td>
</tr>
</tbody>
</table>

* Pause: 1 Second

![Figure 11: Status Indicator LEDs](image-url)
B) LVD
The unit contains a low voltage load disconnect that activates at 36 volts (1.5 vpc) which is factory set and cannot be user modified.

6) Protection
On the AC Input: the device is equipped with an internal fuse. If the internal fuse is blown, it is most probable that there is a fault in the unit. If this occurs, the unit must be returned to the factory.
On the DC Output Battery and Load: The device is electrically protected.

Reverse polarity: the module is automatically protected against reverse of battery polarity and connection of reverse polarity.

Over current and output short circuit: the unit limits the output current. Low voltage disconnect protects battery from deep discharge.

Thermal protection
Operating temperature range -12 to 70°C. Unit will produce full rated power on continuous basis to 50°C, however, system load must be reduced by 2.5% per °C for continuous operation above 50°C. If the temperature reaches 70°C, the unit will reduce its maximum output to approximately 50% of its rating. If the temperature exceeds 70°C, the unit will shut off and restart once temperature drops.

7) Specifications
Input:
Voltage: 90-135/ 180-305 47-63 hz
Amperage: 3.3 @ 120 VAC / 2.2 @ 230 VAC
Output: 48 volts, 5 amps total available to power loads and charge battery, with load priority distribution.
Peak: 15 amps 4 seconds (with battery power boost)
Low Voltage Disconnect Point: 36 VDC

Output ground isolated from case, may be used in positive ground applications. LVD function is lost

Front Panel LED Indicators:
- Power Source: operating on back up – red LED
- Battery and System Diagnostics (via blink code)

Settings/Selectors:
- Battery Type: AGM (Sealed Lead High), Sealed Lead (Low) Acid, Gel-Cell & Open Lead (Flooded Cell)
- Battery Charge Current Limit: 20 - 100% of charge amperage rating
- Alarm Contacts (form C): Active:
 - On back-up power/AC Fail
 - Battery abnormal condition (summary contact): Discharged, damaged, disconnected, sulfated/short circuit, reverse polarity, bad thermal sensor

Operating Temperature: -12 to 70°C. Continuous to 50°C, de-rate 2.5% per °C >50°C

Cooling: Free air convection
Efficiency: ≥83%
Humidity: to 95%, to 25°C

Protection:
- Low Voltage disconnect at 1.5 volts per cell (36 VDC)
- Internal fuse
- Current limiting
- Short circuit
- Reverse polarity
- Thermal overload shut down and recovery
- IP 20
- Designed to UL 1950

Terminal Blocks: Screw type
Mounting: DIN Rail Bracket 35 mm
8) Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
<th>Section</th>
</tr>
</thead>
</table>
| A. Battery requires excessive re-charge time | 1. Load at or near max. recommended load providing minimal current available for charging
2. Charging level current set to low | 1. Reduce load or split load between two separate DIN UPS units | |
| B. Load turns off after a couple of seconds when running on battery | 1. Time buffer set to incorrect position
2. Batteries not charged, due to high load demand | 1. Verify correct setting with manual
2. Reduce load or split load between two separate DIN UPS units | |
| C. No absorption voltage | 1. Absorption jumper not installed | 1. Install provided jumper in position 5 | |
| D. Unit does not turn on | 1. AC input is 115 VAC, no jumper wire installed | 1. Install 115V jumper wire across j1 and j2 | |
| E. Trips AC input breaker | 1. AC shorted to case
2. Defective unit | 1. Verify correct AC input wiring
2. Contact technical service | |
| F. No output | 1. DC output wired backwards or shorted
2. No AC input | 1. Remove AC input and check DC wiring
2. Verify correct AC input and jumper wire installed if powering from 115 VAC | |
| G. No voltage on battery output terminals | 1. No battery installed (voltage required for battery output to turn on)
2. Missing or blown battery wiring fuse | 1. Install batteries
2. Replace missing or blown battery wiring fuse | |
| H. Diagnosis LEDs always blinking | 1. Normal operation | 1. Refer to Chart 2: Diagnosis Table | |

9) Warranty

Newmar warrants the DIN-UPS 48-5 DIN Rail UPS to be free from defects in material and workmanship for two years from date of purchase. If a problem with your DIN-UPS 48-5, or if you have any questions about the installation and proper operation of the unit, please contact NEWMAR's Technical Services Department:

Phone: 714-751-0488 - From the hours of 7:30 a.m. to 5:00 p.m. weekdays, P.S.T.;
Fax: 714-957-1621
E-mail: techservice@newmarpower.com