Table of Contents

Section Page | Section Page
--- --- | --- ---
Quick Start 2 | A) Battery Type/Charge Curve 6
1) General Information 4 | B) Time Charge Current Limit/Battery Charge Level 7
 Materials Provided 4 | C) Time Buffering/Battery Run Time 8
 Optional Accessories 4 | D) System Settings 8
2) Safety Information 4 | 5) Operation 8
3) Installation/Wiring 4 | A) Battery Start w/o AC Present 8
 A) Mounting 4 | Push Button 8
 B) Wiring 5 | B) Status Indicator LED's 8
 1. AC Input 5 | C) LVD 9
 2. Output 5 | 6) Protection 9
 C) Form C Contact 5 | 7) Specifications 10
 D) Temperature Compensation Sensor 6 | 8) Troubleshooting 11
4) Settings 6 | 9) Warranty 11

Quick Start Guide

A) AC Input: Wire Input Block (lettered left to right)
 a) Earth Ground
 b) AC Hot 230 VAC: no jumper installed across j1 & j2
 AC Hot 115 VAC: wire jumper across j1 and j2
 c) Neutral
 j1 & j2) Jumper these two inputs for 115 VAC operation
 See page 5 for details.

B) Battery Output: two terminals each for plus and minus.
 Utilize dual wiring when battery location is more than 15 feet from unit. See page 5 for details.

C) Battery Charge Current Limit: Allows setting maximum current flow to battery during recharge cycle, use when low amp-hour batteries are applied to system to prevent overheating when recovering dead batteries. Adjustment range 20-100% of available charge current. (Available charge current = unit output rating of 10 amps - load demand. Note: the unit has a load priority circuit, all produced power is made available to the load, remaining power is available for battery charging). See page 6 for details.

E) Communication Modbus: contact factory for more information.

F) Output to Load, two terminals each for plus and minus, utilize dual wiring when load is more than 15 feet from unit.
 Note: the unit has a load priority circuit, all produced power is made available to the load, remaining power is available for battery charging. See page 5 for details.

G) Form C Contacts: Activate upon:
 a) AC power fail
 b) Low battery or poor battery condition
 See page 5 for details.

H) System Settings: via plug-in jumper programing terminals located on top of the unit.
 a) Install jumper per illustration below (Table 1) to:
 i. Select float voltage per Battery Type and enable Absorption Charge (see page page 7 for details)
 ii. Enable Battery Test (Functional Setting)
 iii. Disable/Enable Load Priority (Functional Setting)
 See page 8 for details on functional settings.

Mounting DIN DC UPS to DIN Rail

Insert screwdriver in slot of bottom tab and twist to extend bracket

Removing DIN DC UPS from DIN Rail

NEWMAR
Automation DC Power • Powering the Network
www.Newmarpower.com

P.O. Box 1306
Newport Beach
California 92663

Phone: 714-751-0488
Fax: 714-957-1621
E-Mail: techservice@newmarpower.com
I) Time Buffering/Battery Run Time Settings: dial in time interval of desired run time of battery without disconnect.
 a. 1 - 60 minutes
 or
 b. Set at zero for battery run until LVD activates @ 10.5 VDC (1.75 VPC)
 See page 7 for details.

J) Battery Start w/o AC Present Push Button:
 a. If system shuts down due to loss of AC and battery, power push button will allow battery to reconnect and supply the load if sufficient battery voltage is present.

K) Status Indicator LED's
 1. AC Fail: Operating on battery back-up power (LED On). LED extinguishes when AC is present.
 2. Low battery, or poor battery condition
 3. Charger Output Status and Fault Mode Diagnosis: by blink code:

Table 1: System Settings: Battery Selection/Absorption Charge
Note: voltages above are at 20˚ C with no battery temp. sensor connected.

<table>
<thead>
<tr>
<th>Battery Type Selection</th>
<th>Float Charge/ Jumper Insert Position</th>
<th>Absorption Charge Enable/ Jumper Insert Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Lead (Default)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.3 VDC</td>
<td>Pos. 6</td>
</tr>
<tr>
<td>Sealed Lead Insert Jumper: Pos. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.4 VDC</td>
<td>Pos. 6</td>
</tr>
<tr>
<td>Gel Battery Insert Jumper: Pos. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.7 VDC</td>
<td>Pos. 6</td>
</tr>
</tbody>
</table>

Charge Status Blink Code:
- Bulk: 5 blink/second - Recovery
- Absorption: 2 blink/second - Bulk
- Float: 1 blink/second

Fault Mode Diagnosis Blink Code:
- Reverse Polarity: 1 blink, pause
- Battery Not Connected: 2 blink, pause
- Overload or Short Circuit: 4 blink, pause
- Bad Battery Wire Connection, or Bad Battery (internal impedance): 5 blink, pause
- Bad Thermal Sensor: 7 blink, pause and diagnostic
See page 8 for details.
Table 2: System Settings: Functional Settings

<table>
<thead>
<tr>
<th>Function Setting</th>
<th>Settings</th>
<th>Materials Provided:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Test ON</td>
<td>Insert Jumper: Pos. 4</td>
<td>1 ea. DIN-UPS unit with integral DIN rail mount clip</td>
</tr>
<tr>
<td>Load Priority Disable</td>
<td>Insert Jumper: Pos. 7</td>
<td>4 ea. Jumper tabs for programming</td>
</tr>
</tbody>
</table>

1) General Information

This DIN rail mount DC UPS combines all system power functions: power supply, battery charger, UPS circuitry and status monitoring in one compact unit that produces 12 volt, 35 amps allocated via dual outputs for load and battery:

- **Load output**: "load priority" distribution ensures power is dedicated first to the load, with remainder then allocated to battery charging, thus preventing a discharged battery from impacting operation of critical loads.
- **Battery output**: 3 step charging for rapid battery recovery, programmable for battery type, with optional temperature compensation sensor.
- Battery automatically on line to support load anytime AC fails
- Low voltage disconnect protects battery from total discharge
- Automatic periodic battery health diagnosis
- High operating temperature range to 70˚C
- Alarm contacts: AC fail, battery status/condition

Materials Provided:
- 1 ea. DIN-UPS unit with integral DIN rail mount clip
- 4 ea. Jumper tabs for programming
- 1 ea. Jumper wire (orange) for 115 volt input operation

Optional Equipment:
- Temperature Compensation Sensor, P/N: 468-4510-0

2) Safety Information

WARNING – Explosion Hazard. Do not disconnect loads or battery unless AC input and battery have been switched off.

WARNING – Explosion Hazard. Substitution of components may impair suitability for class I, Division 2.

WARNING – Switch off or remove AC input and battery power before wiring the DIN-UPS 12-35. Never work on the DIN UPS when it is connected to AC input and battery. The DIN UPS must be installed in accordance with UL508 or local electrical codes depending upon the application. The DIN UPS should have a suitability sized AC input circuit breaker feeding its AC input. See specification section for maximum AC input draw for your input voltage for circuit breaker sizing.

CAUTION: Hot surface. Avoid touching the DIN UPS case while operating at or near its full load capacity. Remove AC and battery power and allow DIN UPS at least 10 minutes to cool before removing from DIN Rail.

3) Installation/Wiring

A) Mounting:

The unit is designed for 35 mm DIN rail mounting in an enclosure and relies on convection (free air) cooling, thus must have a minimum vertical and horizontal distance to adjacent surface of 4” (10 cm) to this power supply in order to assure sufficient air flow. Note, that depending on the ambient temperature and load of the device, the temperature of the case can become hot to the touch.

The unit is designed for vertical mount (+/- 5˚) and has an integral clip on the back to secure it to the rail. To mount, place the top tabs over the top of the DIN rail, and using a long slotted screw driver insert it in the groove at the bottom of the bracket and twist which will extend the spring loaded mounting bracket downward allowing the unit to be positioned against the DIN rail, release the bracket with DIN UPS positioned vertically and the rail will be captured and the unit secured.
B) Wiring

1. AC Input: Terminal Block (lettered left to right) - Figure 4

 a) Earth Ground
 b) AC Hot (note: install jumper provided across terminals j1 and j2 for 115 VAC input)
 c) Neutral

 j1 & j2) Jumper these two terminals for 115 VAC operation and apply 115V hot to term b and neutral to c

 Recommended wire size: 16 AWG

2. Output

 The unit has dual output circuits: one for connection to the Load, the other to the back-up battery. Note: the unit has a load priority circuit, all produced power first is made available to the load with remaining power made available for battery charging. Both outputs are isolated from the case.

 Battery Output: two sets of terminals each for plus and minus. Utilize dual wiring when battery location is more than 15 feet from unit to minimize voltage drop. See page 2 and 3, Section H for programming per battery type.

 Output to Load: two terminals each for plus and minus, utilize dual wiring when load is more than 15 feet from unit to minimize voltage drop.

 Fuse note: We recommend a 50 amp fuse be installed on the hot leg at battery. If using both sets of battery terminals on DIN UPS (i.e. two pairs of wires, recommended for long wire runs), connect both hot wires to one side of battery fuse.

 Battery/Output wires size (recommended): 10 AWG
 Terminal Block maximum wire size (recommended): 10 AWG

C) Alarm Contacts, Form C (Isolated):

 Form C Contacts for remote monitor: Activate upon:
 a. AC power fail
 b. Low battery, or poor battery condition
Table 2: Alarm Contacts

<table>
<thead>
<tr>
<th>Contact</th>
<th>1 AC Fail LED</th>
<th>2 Fault Battery* LED</th>
<th>3 Diagnosis LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>5-6</td>
<td>5-7</td>
<td>8-9</td>
</tr>
<tr>
<td>AC only</td>
<td>closed</td>
<td>open</td>
<td>open</td>
</tr>
<tr>
<td>AC + Batt</td>
<td>closed</td>
<td>open</td>
<td>closed</td>
</tr>
<tr>
<td>Batt only</td>
<td>open</td>
<td>closed</td>
<td>closed</td>
</tr>
<tr>
<td>Low Batt</td>
<td>open</td>
<td>closed</td>
<td>closed</td>
</tr>
</tbody>
</table>

* Labeled Low Battery or Battery Replacement on Front Panel

Relay Contact Rating:
Max. DC: 30 VDC, 1 amp; AC: 60 VAC, 1 amp; Resistive load (EN 60947-4-1)
Min. 1mA at 5 VDC

D) Optional Battery Temperature Compensation Sensor P/N: 468-4510-0

To install, remove the access tab in the front panel decal labeled “Temp Probe”, install the Temp. Sensor into the RJ-45 connector. Attach sensor to side of battery using RTV silicone.

The sensor will vary the battery charging voltage depending on the battery’s temperature and charge program setting.

Table 3: Absorption Charge Voltage & Float Charge Voltage Settings

Formula for determining temperature compensated Float or Absorption voltage based on battery temperature:

Float
Formula: Float Voltage = (13. * VDC) – (sensor temp. – 20° C) (.018 VDC)
* see Table 1 for Float voltage based on battery type selected

Example Conditions
- Battery selection jumper installed for 13.4 VDC Sealed Lead Float voltage
- Battery temperature = 60° C

Float voltage =
(13.4 VDC) – (60°C – 20° C) (.018 VDC) =
(13.4 VDC) – (40°C x .018 VDC) =
13.4 VDC – .72 VDC =
12.68 VDC Float @ 60° C

If the battery temperature is less than -20° C or greater than +60° C, an ‘outside its range (temp. sensor)’ alarm is signalled with code 7 blink.

If the sensor is not connected or if the sensor is defective, the LED Low Batt will illuminate and the LED Diagnosis’ LED continues to show the status of the battery, i.e., trickle charge, fast charge or recovery charge.
4) Settings

A) Battery Type/Charge Curve
Charge curve per battery type: via programming jumpers on top panel of unit left side.

Using programming jumper tabs provided and a small needle nose pliers, insert programming jumpers to select float voltage and enable absorption voltage per per battery type. Caution do not program unit while connected to power.

B) Battery Charge Current Limit/Battery Charge Level

Allows setting maximum current flow to battery during recharge cycle - use when low amp-hour batteries are applied to system to prevent overheating when recovering dead batteries. Adjustment range 20-100% of available charge current. (Available charge current = unit output rating of 10 amps minus load demand. Note: the unit has a load priority circuit, all produced power is made available to the load, remaining power is available for battery charging).

To set, use small slotted screw driver to rotate selector dial. Set dial between 10 to 20% of battery capacity (Amp Hours).

Table 4: Battery Selection/Absorption Charge

<table>
<thead>
<tr>
<th>Battery Type Selection</th>
<th>Float Charge/ Jumper Insert Position</th>
<th>Absorption Charge Enable/ Jumper Insert Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Lead (Default)</td>
<td></td>
<td> Pos. 6</td>
</tr>
<tr>
<td></td>
<td>13.3 VDC</td>
<td>14.4 VDC</td>
</tr>
<tr>
<td>Sealed Lead Insert Jumper: Pos. 1</td>
<td> Pos. 1</td>
<td> Pos. 6</td>
</tr>
<tr>
<td></td>
<td>13.4 VDC</td>
<td>14.4 VDC</td>
</tr>
<tr>
<td>Gel Battery Insert Jumper: Pos. 2</td>
<td> Pos. 2</td>
<td> Pos. 6</td>
</tr>
<tr>
<td></td>
<td>13.7 VDC</td>
<td>14.4 VDC</td>
</tr>
</tbody>
</table>

Figure 10: Current Limit/Battery Charge Level - Dial
C) Time Buffering/Battery Run Time

This function determines how long the reserve battery will power the system in the event of AC failure. You may choose a specified time or run until the LVD activates.

Settings: dial in time interval of desired run time of battery without disconnect. Using small screw driver to set the dial arrow to the desired setting:

a. 1 - 60 minutes
or
b. Set at zero for battery run until LVD activates @ 10.5 VDC (1.75 VPC)

Figure 11: Time Buffering/Battery Run Time - Dial

D) System Settings

Via plug-in jumper programing terminals located on top of the unit. Install jumper per illustration below to:

ii. Enable Battery Test
iii. Disable/Enable Load Priority

<table>
<thead>
<tr>
<th>Function Setting</th>
<th>Setting</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Test ON</td>
<td>Insert Jumper: Pos. 4</td>
<td>![Battery Test ON Diagram]</td>
</tr>
<tr>
<td>Insert Jumper: Pos. 4</td>
<td>![Battery Test ON Diagram]</td>
<td></td>
</tr>
<tr>
<td>Load Priority Disable</td>
<td>Insert Jumper: Pos. 7</td>
<td>![Load Priority Disable Diagram]</td>
</tr>
<tr>
<td>(Makes full power available for charging)</td>
<td>![Load Priority Disable Diagram]</td>
<td></td>
</tr>
<tr>
<td>Insert Jumper: Pos. 7</td>
<td>![Load Priority Disable Diagram]</td>
<td></td>
</tr>
</tbody>
</table>

Jumper inserted at position 4 to enable Periodic Battery condition test process. (Fault reported by LED diagnosis blink code, see Table 6):

- Battery wiring connection
- Battery efficiency/sulfation (impedance test)
- Shorted Cell

Jumper inserted into position 7 making all power from the unit available for battery charging by disabling the load priority output function. Under low battery charge condition, output voltage to load will be equal to that of the battery voltage, thus useful voltage to the load will not be available until the battery recovers to proper levels.

5) Operation

A) Battery Start without AC Present Push Button:
If system shuts down due to loss of AC and battery power, pushing button will allow battery to come on line to supply the load. Press and hold for 3 seconds to re-connect battery to output. Note, if LVD has activated and battery voltage has not recovered above disconnect point, the unit will not cycle on.

B) Status Indicator LED’s

1. Power source: Mains or back up
 i. AC OK (AC Fail LED Off)
 or
 ii. Operating on battery backup power (AC Fail LED On) red
2. Low battery, or battery replacement

LED illuminates when:
- Low Battery (capacity less than 30%)
- Bad connection to battery
- Battery requires replacement

3 diagnosis LED.

Charger output status system diagnosis and Fault mode diagnosis: by blink code (Table 6 on next page).

Figure 12: Battery Start LED

Figure 13: Status Indicator LEDs
Table 6: Status Indicator LEDs

<table>
<thead>
<tr>
<th>Monitoring Control</th>
<th>State</th>
<th>LED Diagnosis (No.8)</th>
<th>LED Battery Fault No.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging Type</td>
<td>Float</td>
<td>1 Blink/sec</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Absorption</td>
<td>2 Blink/sec</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>5 Blink/sec</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Reverse polarity or high battery Voltage</td>
<td>1 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Battery Not connected, no output power</td>
<td>2 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Battery shorted cell</td>
<td>3 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Over Load or short circuit on the load</td>
<td>4 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Bad battery: Internal impedance Bad or Bad battery wire connection</td>
<td>5 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Battery Life test not possible</td>
<td>6 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Temp. Sensor outside its range</td>
<td>7 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Boost condition: battery discharge after 4 min. of overload.</td>
<td>8 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Internal fault</td>
<td>9 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Low battery detected when system activated by battery start button with no ac input</td>
<td>10 Blink/pause</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>Life test not possible; Parallel mode on Slave Device</td>
<td>12 Blink/pause</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bad battery wire connection, Parallel mode on Slave Device</td>
<td>13 Blink/pause</td>
<td></td>
</tr>
</tbody>
</table>

* Pause: 1 Second

6) Protection

On the AC Input: the device is equipped with an internal fuse. If the internal fuse is blown, it is most probable that there is a fault in the unit. If this occurs, the unit must be returned to the factory.

On the DC Output Battery and Load: The device is electrically protected.

Reverse polarity: the module is automatically protected against reverse of battery polarity and connection of reverse polarity.

Over current and output short circuit: the unit limits the output current. Low voltage disconnect protects battery from deep discharge.

(© LVD)

The unit contains a low voltage load disconnect that activates at 10.5 volts (1.75 vpc) which is factory set and cannot be user modified. (See also Section 4-C regarding operation with battery time out circuit)
Thermal protection
Operating temperature range -12 to 70˚C. Unit will produce full rated power on continuous basis to 50˚C; however, system load must be reduced by 2.5% per 1˚ for continuous operation above 50˚C. If the temperature reaches 70˚C, the unit will reduce its maximum output to approximately 50% of its rating. If the temperature exceeds 70˚C, the unit will shut off and restart once temperature drops.

7) Specifications

Input:
Voltage: 90-135/180-305 47-63 hz
Amperage: 8 @ 120 VAC / 4.2 @ 230 VAC
Output: 12 volts, 35 amps total available to power loads and charge battery, with load priority distribution.
Peak: 70 amps 4 seconds (with battery power boost)

Output ground isolated from case, may be used in positive ground applications. LVD function is lost

Front Panel LED Indicators:
- Power Source: operating on back up – red AC Fail LED
- Battery and System Diagnostics (via blink code)

Settings/Selectors:
- Battery Type: AGM (Sealed Lead), Gel-Cell and Open Lead (Flooded Cell)
- Battery Charge Current Limit: 20 - 100% of charge amperage rating
- Back-Up Run Time on Batteries:
 - Programmed time limit: 1 - 60 min.
 - Until LVD disconnect @ 10.5V
- Power Restore Button: connects battery without AC present

Alarm Contacts (form C): Active:
- AC Fail (on battery back-up)
- Battery abnormal condition (summary contact): Discharged, damaged, disconnected, sulfated/short circuit, reverse polarity, bad thermal sensor

Operating Temperature: -12 to 70˚C. Continuous to 50˚C, de-rate 2.5% per˚ C >50˚ C

Cooling: Free air convection
Efficiency: 91%
Humidity: to 95%, to 25˚ C

Protection:
- Low Voltage disconnect at 1.75 volts per cell (10.5 VDC)
- Internal fuse
- Current limiting
- Short circuit
- Reverse polarity
- Thermal overload shut down and recovery
- IP 20
- Designed to UL 1950

Terminal Blocks: Screw type
Mounting: DIN Rail Bracket 35 mm
Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Battery requires excessive re-charge time</td>
<td>1. Load at or near max. recommended load providing minimal current available for charging</td>
<td>1. Reduce load or split load between two separate DIN UPS units</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Charging level current set to low</td>
<td>2. Adjust “Battery Charging Level” control knob to higher level</td>
<td></td>
</tr>
<tr>
<td>B. Load turns off after a couple of seconds when running on battery</td>
<td>1. Time buffer set to incorrect position</td>
<td>1. Verify correct setting with manual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Batteries not charged, due to high load demand</td>
<td>2. Reduce load or split load between two separate DIN UPS units</td>
<td></td>
</tr>
<tr>
<td>C. No absorption voltage</td>
<td>1. Absorption jumper not installed</td>
<td>1. Install provided jumper in position 6</td>
<td></td>
</tr>
<tr>
<td>D. Unit does not turn on</td>
<td>1. AC input is 115 VAC, no jumper wire installed</td>
<td>1. Install 115V jumper wire across j1 and j2</td>
<td></td>
</tr>
<tr>
<td>E. Trips AC input breaker</td>
<td>1. AC shorted to case</td>
<td>1. Verify correct AC input wiring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Defective unit</td>
<td>2. Contact technical service</td>
<td></td>
</tr>
<tr>
<td>F. No output</td>
<td>1. DC output wired backwards or shorted</td>
<td>1. Remove AC input and check DC wiring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. No AC input</td>
<td>2. Verify correct AC input and jumper wire installed if powering from 115 VAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Excessive temperature or blocked ventilation</td>
<td>3. Improve ventilation, unblock vent holes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Defective unit</td>
<td>4. Contact technical service</td>
<td></td>
</tr>
<tr>
<td>G. No voltage on battery output terminals</td>
<td>1. No battery installed (voltage required for battery output to turn on)</td>
<td>1. Install batteries</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Missing or blown battery wiring fuse</td>
<td>2. Replace missing or blown battery wiring fuse</td>
<td></td>
</tr>
<tr>
<td>H. Diagnosis LEDs always blinking</td>
<td>1. Normal operation</td>
<td>1. Refer to Chart 2: Diagnosis Table</td>
<td></td>
</tr>
</tbody>
</table>

Warranty

Newmar warrants that the DIN-UPS 12-35 DIN Rail UPS to be free from defects in material and workmanship for two years from date of purchase. If a problem with your DIN-UPS 12-35, or if you have any questions about the installation and proper operation of the unit, please contact NEWMAR’s Technical Services Department:

Phone: 714-751-0488 - From the hours of 7:30 a.m. to 5:00 p.m. weekdays, P.S.T.;
Fax: 714-957-1621
E-mail: techservice@newmarpower.com